Mining Optimized Support Rules for Numeric Attributes

نویسندگان

  • Rajeev Rastogi
  • Kyuseok Shim
چکیده

Mining association rules on large data sets have received considerable attention in recent years. Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. Furthermore, optimized association rules are an effective way to focus on the most interesting characteristics involving certain attributes. Optimized association rules are permitted to contain uninstantiated attributes and the problem is to determine instantiations such that either the support, confidence or gain of the rule is maximized. In this paper, we generalize the optimized support association rule problem by permitting rules to contain disjunctions over uninstantiated numeric attributes. Our generalized association rules enable us to extract more useful information about seasonal and local patterns involving the uninstantiated attribute. For rules containing a single numeric attribute, we present a dynamic programming algorithm for computing optimized association rules. Furthermore, we propose bucketing technique for reducing the input size, and a divide and conquer strategy that improves the performance significantly without sacrificing optimality. We also present approximation algorithms based on dynamic programming for two numeric attributes. Our experimental results for a single numeric attribute indicate that our bucketing and divide and conquer enhancements are very effective in reducing the execution times and memory requirements of our dynamic programming algorithm. Furthermore, they show that our algorithms scale up almost linearly with the attribute’s domain size as well as the number of disjunctions. r 2001 Elsevier Science Ltd. All rights

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Optimized Association Rules with Categorical and Numeric Attributes

ÐMining association rules on large data sets has received considerable attention in recent years. Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial, and retail sectors. Furthermore, optimized association rules are an effective way to focus on the most interesting characteristics involving certain attributes. ...

متن کامل

Multi-objective Numeric Association Rules Mining via Ant Colony Optimization for Continuous Domains without Specifying Minimum Support and Minimum Confidence

Currently, all search algorithms which use discretization of numeric attributes for numeric association rule mining, work in the way that the original distribution of the numeric attributes will be lost. This issue leads to loss of information, so that the association rules which are generated through this process are not precise and accurate. Based on this fact, algorithms which can natively h...

متن کامل

Knowledge Discovery from Health Data Using Weighted Aggregation Classifiers

Introduction. The automatic construction of classifiers is an important research problem in data mining, since it provides not only a good prediction but provides also a characterization of a given data in the form easily understood by a human. A decision tree [4] is a classifier widely used in real applications, which are easy to understand, and efficiently constructed by using a method based ...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

Mining Frequent Ranges of Numeric Attributes via Ant Colony Optimization for Continuous Domains without Specifying Minimum Support

Currently, all search algorithms which use discretization of numeric attributes for numeric association rule mining, work in the way that the original distribution of the numeric attributes will be lost. This issue leads to loss of information, so that the association rules which are generated through this process are not precise and accurate. Based on this fact, algorithms which can natively h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Syst.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1999